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Number Systems Concepts
 
The study of number systems is useful to the student of computing due to the fact that number systems other than the familiar decimal 
(base 10) number system are used in the computer field. 
 
Digital computers internally use the binary (base 2) number system to represent data and perform arithmetic calculations.  The 
binary number system is very efficient for computers, but not for humans.  Representing even relatively small numbers with the binary 
system requires working with long strings of ones and zeroes. 
 
The hexadecimal (base 16) number system (often called "hex" for short) provides us with a shorthand method of working with 
binary numbers.  One digit in hex corresponds to four binary digits (bits), so the internal representation of one byte can be represented 
either by eight binary digits or two hexadecimal digits.  Less commonly used is the octal (base 8) number system, where one digit in 
octal corresponds to three binary digits (bits). 
 
In the event that a computer user (programmer, operator, end user, etc.) needs to examine a display of the internal representation of 
computer data (such a display is called a "dump"), viewing the data in a "shorthand" representation (such as hex or octal) is less 
tedious than viewing the data in binary representation.  The binary, hexadecimal , and octal number systems will be looked at in the 
following pages. 
 
The decimal number system that we are all familiar with is a positional number system.  The actual number of symbols used in a 
positional number system depends on its base (also called the radix).  The highest numerical symbol always has a value of one less 
than the base.  The decimal number system has a base of 10, so the numeral with the highest value is 9; the octal number system has a 
base of 8, so the numeral with the highest value is 7, the binary number system has a base of 2, so the numeral with the highest value is 
1, etc. 
 
Any number can be represented by arranging symbols in specific positions.  You know that in the decimal number system, the 
successive positions to the left of the decimal point represent units (ones), tens, hundreds, thousands, etc.  Put another way, each 
position represents a specific power of base 10.  For example, the decimal number 1,275 (written 1,27510)* can be expanded as 
follows: 
  1 2 7 510 
 
       5 x 100 = 5 x 1 = 5 
       7 x 101 = 7 x 10 = 70 
       2 x 102 = 2 x 100 = 200 
       1 x 103 = 1 x 1000 = 1000 
               ------  
               1275 10
 
Remember the mathematical rule that n0 = 1, or any number raised to the zero power is equal to 1. 
 
Here is another example of an expanded decimal number: 
 
 1 0 4 0 610 
 
       6 x 100 = 6 x 1 = 6 
       0 x 101 = 0 x 10 = 0 
       4 x 102 = 4 x 100 = 400 
       0 x 103 = 0 x 1000 = 0 
       1 x 104 = 1 x 10000 = 10000 
               --------  
               10406 10

                                                           
* When doing number system problems, it is helpful to use a subscript to indicate the base of the number being worked with.  Thus, 

the subscript "10" in 127510 indicates that we are working with the number 1275 in base 10. 
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TRY THIS: Expand the following decimal number: 
 

5 1 3 010
 
 
 
 
 
 
 
 
 
 
 
 

The Binary Number System
 
The same principles of positional number systems we applied to the decimal number system can be applied to the binary number 
system.  However, the base of the binary number system is two,  so each position of the binary number represents a successive power 
of two.  From right to left, the successive positions of the binary number are weighted 1, 2, 4, 8, 16, 32, 64, etc.  A list of the first 
several powers of 2 follows: 
 

20 = 1  21 = 2  22 = 4  23 = 8  24 = 16  25 = 32   
26 = 64  27 = 128  28 = 256  29 = 512  210 = 1024 211 = 2048 

 
For reference, the following table shows the decimal numbers 0 through 31 with their binary equivalents: 

 
Decimal Binary Decimal Binary 

0 0 16 10000 
1 1 17 10001 
2 10 18 10010 
3 11 19 10011 
4  100 20 10100 
5 101 21 10101 
6 110 22 10110 
7  111 23 10111 
8 1000 24 11000 
9 1001 25 11001 
10 1010 26 11010 
11 1011 27 11011 
12 1100 28 11100 
13 1101 29 11101 
14 1110 30 11110 
15 1111 31 11111 
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Converting a Binary Number to a Decimal Number
 
To determine the value of a binary number (10012, for example), we can expand the number using the positional weights as follows: 
 
  1 0 0 12 
 
       1 x 20 = 1 x 1 = 1 
       0 x 21 = 0 x 2 = 0 
       0 x 22 = 0 x 4 = 0 
       1 x 23 = 1 x 8 = 8 
               ------  
               9 10
 
 
Here's another example to determine the value of the binary number 11010102: 
 
 1 1 0 1 0 1 02 
 
         0 x 20 = 0 x 1 = 0 
         1 x 21 = 1 x 2 = 2 
         0 x 22 = 0 x 4 = 0 
         1 x 23 = 1 x 8 = 8 
         0 x 24 = 0 x 16 = 0 
         1 x 25 = 1 x 32 = 32 
         1 x 26 = 1 x 64 = 64 
                 ------  
                 106 10
 
 
TRY THIS: Convert the following binary numbers to their decimal equivalents: 
 
(a) 1 1 0 0 1 1 02
 
 
 
 
 
 
 
 
 
 
 
(b) 1 1 1 1 1 0 0 12 
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Converting a Decimal Number to a Binary Number
 
To convert a decimal number to its binary equivalent, the remainder method can be used.  (This method can be used to convert a 
decimal number into any other base.)  The remainder method involves the following four steps: 
 
(1) Divide the decimal number by the base (in the case of binary, divide by 2). 
 
(2) Indicate the remainder to the right. 
 
(3) Continue dividing into each quotient (and indicating the remainder) until the divide operation produces a zero quotient. 
 
(4) The base 2 number is the numeric remainder reading from the last division to the first (if you start at the bottom, the answer 

will read from top to bottom). 
 
Example 1:  Convert the decimal number 9910 to its binary equivalent: 
 
  

 0 
  
2 1 
 

 
1 

 
(7) 

 
Divide 2 into 1.  The quotient is 0 with a remainder of 1, as indicated.  
Since the quotient is 0, stop here. 

  
 1 
  
2 3 
 

 
1 

 
(6) 

 
Divide 2 into 3.  The quotient is 1 with a remainder of 1, as indicated. 

  
 3 
  
2 6 
 

 
0 

 
(5) 

 
Divide 2 into 6.  The quotient is 3 with a remainder of 0, as indicated. 

  
   6 
  
2 12 
 

 
0 

 
(4) 

 
Divide 2 into 12.  The quotient is 6 with a remainder of 0, as indicated. 

  
 12 
  
2 24 
 

 
0 

 
(3) 

 
Divide 2 into 24.  The quotient is 12 with a remainder of 0, as indicated 

  
 24 
  
2 49 
 

 
1 
 
 

 
(2) 

 
Divide 2 into 49 (the quotient from the previous division).  The quotient 
is 24 with a remainder of 1, indicated on the right. 

 
 
START 
HERE ⇒ 

 
 49 
  
2 99 
 

 
1 
 
 

 
(1) 

 
Divide 2 into 99.  The quotient is 49 with a remainder of 1; indicate the 
1 on the right. 
 

  
 
The answer, reading the remainders from top to bottom, is 1100011, so 9910 = 11000112. 
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Example 2:  Convert the decimal number 1310 to its binary equivalent: 
 
  

 0 
  
2 1 
 

 
1 

 
(4) 

 
Divide 2 into 1.  The quotient is 0 with a remainder of 1, as indicated. 

  
 1 
  
2 3 
 

 
1 

 
(3) 

 
Divide 2 into 3.  The quotient is 1 with a remainder of 1, as indicated. 

  
 3 
  
2 6 
 

 
0 
 
 

 
(2) 

 
Divide 2 into 6.   The quotient is 3 with a remainder of 0, indicated on 
the right. 

 
 
START 
HERE ⇒ 

 
   6 
  
2 13 
 

 
1 
 
 

 
(1) 

 
Divide 2 into 13.  The quotient is 6 with a remainder of 1; indicate the 1 
on the right. 
 

 
The answer, reading the remainders from top to bottom, is 1101, so 1310 = 11012. 
 
 
TRY THIS: Convert the following decimal numbers to their binary equivalents: 
 
 

(a) 4910      (b) 2110
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Binary Addition
 
Adding two binary numbers together is easy, keeping in mind the following four addition rules: 
 
(1) 0 + 0 = 0 
 
(2) 0 + 1 = 1 
 
(3) 1 + 0 = 1 
 
(4) 1 + 1 = 10 

 
 

Note in the last example that it was necessary to "carry the 1".  After the first two binary counting numbers, 0 and 1, all of the binary 
digits are used up.  In the decimal system, we used up all the digits after the tenth counting number, 9.  The same method is used in 
both systems to come up with the next number: place a zero in the "ones" position and start over again with one in the next position on 
the left.  In the decimal system, this gives ten, or 10.  In binary, it gives 102, which is read "one-zero, base two." 
 
 
Consider the following binary addition problems and note where it is necessary to carry the 1: 
 
 
                1    1 1     1 1 1 1  
  1 1 0   1 1   1 0 0   1 1   1 0 1 0   1 1 1 1 1 
 + 0 0 1  + 1 0  + 1 0 1  + 0 1  + 0 1 1 1  + 0 1 0 1 1 
                                
  1 1 1  1 0 1  1 0 0 1  1 0 0  1 0 0 0 1  1 0 1 0 1 0 
 
 
 
TRY THIS:  Perform the following binary additions: 
 
                            

(a) 1 0 0 1  (b) 1 1 1 0  (c) 1 0 1 0 1  (d) 1 1 0 1 1 0   
+ 1 1 0 0  + 1 1 0 1  + 0 0 1 1 1  + 1 1 1 0 1 1   

                            
                            

 
 
 

Subtraction Using Complements
 
Subtraction in any number system can be accomplished through the use of complements.  A complement is a number that is used to 
represent the negative of a given number. 
 
When two numbers are to be subtracted, the subtrahend* can either be subtracted directly from the minuend (as we are used to doing 
in decimal subtraction) or, the complement of the subtrahend can be added to the minuend to obtain the difference.  When the latter 
method is used, the addition will produce a high-order (leftmost) one in the result (a "carry"), which must be dropped.  This is how the 
computer performs subtraction: it is very efficient for the computer to use the same "add" circuitry to do both addition and subtraction; 
thus, when the computer "subtracts", it is really adding the complement of the subtrahend to the minuend.  

                                                           
* In mathematical terminology, the factors of a subtraction problem are named as follows: Minuend - Subtrahend = Difference.  
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To understand complements, consider a mechanical register, such as a car mileage indicator, being rotated backwards.  A five-digit 
register approaching and passing through zero would read as follows: 
 

00005 
00004 
00003 
00002 
00001 
00000 
99999 
99998 
99997 
etc. 

 
It should be clear that the number 99998 corresponds to -2.  Furthermore, if we add 
 

00005 
+ 99998
1 00003 

 
and ignore the carry to the left, we have effectively formed the operation of subtraction: 5 - 2 = 3. 
 
The number 99998 is called the ten's complement of 2.   The ten's complement of any decimal number may be formed by subtracting 
each digit of the number from 9, then adding 1 to the least significant digit of the number formed.   
 
In the example above, subtraction with the use of complements was accomplished as follows: 
 
(1) We were dealing with a five-digit subtrahend that had a value of 00002.  First, each digit of the subtrahend was subtracted 

from 9  (this preliminary value is called the nine's complement of the subtrahend): 
                            

        9   9  9   9  9            
       - 0 - 0 - 0 - 0 - 2            

                            
        9  9  9  9  7            
 
(2) Next, 1 was added to the nine's complement of the subtrahend (99997) giving the ten's complement of subtrahend (99998): 
                        

        9 9 9 9 7            
           + 1            

                        
        9 9 9 9 8            
 
 
(3) The ten's complement of the subtrahend was added to the minuend giving 100003. The leading (carried) 1 was dropped, 

effectively performing the subtraction of 00005 - 00002 = 00003. 
                        

        0 0 0 0 5            
       + 9 9 9 9 8            

                        
       1 0 0 0 0 3            
 
The answer can be checked by making sure that 2 + 3 = 5. 
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Another example: Still sticking with the familiar decimal system, subtract 4589 - 322, using complements ("eyeballing" it tells us we 
should get 4267 as the difference). 

 
(1) First, we'll compute the four digit nine's complement of the subtrahend 0322 (we must add the leading zero in front of the 

subtrahend to make it the same size as the minuend): 
                            

           9  9   9  9            
         - 0 - 3 - 2 - 2            

                            
          9  6  7  7            
 
(2) Add 1 to the nine's complement of the subtrahend (9677) giving the ten's complement of subtrahend (9678): 
                        

         9 6 7 7            
           + 1            

                        
         9 6 7 8            
    
 
(3) Add the ten's complement of the subtrahend to the minuend giving 14267. Drop the leading 1, effectively performing the 

subtraction of 4589 - 0322 = 4267. 
                       

        4 5 8 9            
       + 9 6 7 8            

                       
       1 4 2 6 7            
 
The answer can be checked by making sure that 322 + 4267 = 4589. 
 
TRY THIS: Solve the following subtraction problems using the complement method: 
 
(a) 5086 - 2993 =  
 
 
 
 
 
 
 
 
 
 
(b) 8391 - 255 = 
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Binary Subtraction

 
We will use the complement method to perform subtraction in binary and in the sections on octal and hexadecimal that follow.  As 
mentioned in the previous section, the use of complemented binary numbers makes it possible for the computer to add or subtract 
numbers using only circuitry for addition - the computer performs the subtraction of A - B by adding A + (two's complement of B) and 
then dropping the carried 1.   
 
The steps for subtracting two binary numbers are as follows: 
 
(1) Compute the one's complement of the subtrahend by subtracting each digit of the subtrahend by 1.  A shortcut for doing this 

is to simply reverse each digit of the subtrahend - the 1's become 0's and the 0's become 1's. 
 
(2) Add 1 to the one's complement of the subtrahend to get the two's complement of the subtrahend. 
 
(3) Add the two's complement of the subtrahend to the minuend and drop the high-order 1.  This is your difference. 
 
 
Example 1:  Compute 110101012 - 10010112
 
(1) Compute the one's complement of 10010112 by subtracting each digit from 1 (note that a leading zero was added to the 7-

digit subtrahend to make it the same size as the 8-digit minuend): 
                               
       1  1  1  1  1  1  1  1          
      - 0 - 1 - 0 - 0 - 1 - 0 - 1 - 1          
                               
       1  0  1  1  0  1  0  0          

 
 (Note that the one's complement of the subtrahend causes each of the original digits to be reversed.) 
 
(2) Add 1 to the one's complement of the subtrahend, giving the two's complement of the subtrahend: 
                        
       1 0 1 1 0 1 0 0          
             + 1          
                        
       1 0 1 1 0 1 0 1          

 
(3) Add the two's complement of the subtrahend to the minuend and drop the high-order 1, giving the difference: 
                        
       1 1 1  1  1           
       1 1 0 1 0 1 0 1          
      + 1 0 1 1 0 1 0 1          
                        
      1 1 0 0 0 1 0 1 0          
 
 
So 110101012 - 10010112 = 100010102. 
 
The answer can be checked by making sure that 10010112 + 100010102 = 110101012 . 
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Example 2:  Compute 111110112 - 110000012
 
(1) Come up with the one's complement of the subtrahend, this time using the shortcut of reversing the digits: 
                        
  Original number: 1 1 0 0 0 0 0 1              
                        
  One's complement: 0 0 1 1 1 1 1 0              
                        

 
 
(2) Add 1 to the one's complement of the subtrahend, giving the two's complement of the subtrahend (the leading zeroes of the 

one's complement can be dropped): 
                        
         1 1 1 1 1 0          
             + 1          
                        
         1 1 1 1 1 1          

 
(3) Add the two's complement of the subtrahend to the minuend and drop the high-order 1, giving the difference: 
                        
       1 1 1 1 1 1 1           
       1 1 1 1 1 0 1 1          
        + 1 1 1 1 1 1          
                        
      1 0 0 1 1 1 0 1 0          
 
 
So 111110112 - 110000012 = 1110102. 
 
The answer can be checked by making sure that 110000012 + 1110102 = 111110112. 
 
TRY THIS: Solve the following binary subtraction problems using the complement method: 
 
(a) 110011012 - 101010102 =   (b) 1001002 - 111012 = 
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The Octal Number System 
 
The same principles of positional number systems we applied to the decimal and binary number systems can be applied to the octal 
number system.  However, the base of the octal number system is eight,  so each position of the octal number represents a successive 
power of eight.  From right to left, the successive positions of the octal number are weighted 1, 8, 64, 512, etc.  A list of the first 
several powers of 8 follows: 
 

80 = 1  81 = 8  82 = 64  83 = 512  84 = 4096 85 = 32768   
 
For reference, the following table shows the decimal numbers 0 through 31 with their octal equivalents: 

 
Decimal Octal Decimal Octal 

0 0 16 20 
1 1 17 21 
2 2 18 22 
3 3 19 23 
4 4 20 24 
5 5 21 25 
6 6 22 26 
7 7 23 27 
8 10 24 30 
9 11 25 31 
10 12 26 32 
11 13 27 33 
12 14 28 34 
13 15 29 35 
14 16 30 36 
15 17 31 37 

 
 

Converting an Octal Number to a Decimal Number
 
To determine the value of an octal number (3678, for example), we can expand the number using the positional weights as follows: 
 
   3 6 78 
 
       7 x 80 = 7 x 1 = 7 
       6 x 81 = 6 x 8 = 48 
       3 x 82 = 3 x 64 = 192 
               ------  
               247 10
 
 
Here's another example to determine the value of the octal number 16018: 
 
    1 6 0 18 
 
         1 x 80 = 1 x 1 = 1 
         0 x 81 = 0 x 8 = 0 
         6 x 82 = 6 x 64 = 384 
         1 x 83 = 1 x 512 = 512 
                 ------  
                 897 10



Number Systems 
 

 

 
Page 13 

TRY THIS: Convert the following octal numbers to their decimal equivalents: 
 
(a) 5 3 68
 
 
 
 
 
 
 
 
 
 
(b) 1 1 6 38 
 
 
 
 
 
 
 
 
 
 

Converting a Decimal Number to an Octal Number
 
To convert a decimal number to its octal equivalent, the remainder method (the same method used in converting a decimal number to  
its binary equivalent) can be used.  To review, the remainder method involves the following four steps: 
 
(1) Divide the decimal number by the base (in the case of octal, divide by 8). 
(2) Indicate the remainder to the right.   
(3) Continue dividing into each quotient (and indicating the remainder) until the divide operation produces a zero quotient. 
(4) The base 8 number is the numeric remainder reading from the last division to the first (if you start at the bottom, the answer 

will read from top to bottom). 
 
Example 1:  Convert the decimal number 46510 to its octal equivalent: 
  

 0 
  
8 7 
 

 
7 

 
(3) 

 
Divide 8 into 7.  The quotient is 0 with a remainder of 7, as indicated. 
Since the quotient is 0, stop here. 

  
   7  
  
8 58 
 

 
2 
 
 

 
(2) 

 
Divide 8 into 58 (the quotient from the previous division).  The quotient 
is 7 with a remainder of 2, indicated on the right. 

 
 
START 
HERE ⇒ 

 
   58 
  
8 465 
 

 
1 
 
 

 
(1) 

 
Divide 8 into 465.  The quotient is 58 with a remainder of 1; indicate the 
1 on the right. 
 

  
The answer, reading the remainders from top to bottom, is 721, so 46510 = 7218. 
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Example 2:  Convert the decimal number 254810 to its octal equivalent: 
  

 0 
  
8 4 
 

 
4 

 
(4) 

 
Divide 8 into 4.  The quotient is 0 with a remainder of 4, as indicated. 
Since the quotient is 0, stop here. 

  
   4  
  
8 39 
 

 
7 

 
(3) 

 
Divide 8 into 39.   The quotient is 4 with a remainder of 7, indicated on 
the right. 

  
   39  
  
8 318 
 

 
6 
 
 

 
(2) 

 
Divide 8 into 318 (the quotient from the previous division).  The 
quotient is 39 with a remainder of 6, indicated on the right. 

 
 
START 
HERE ⇒ 

 
    318 
  
8 2548 
 

 
4 
 
 

 
(1) 

 
Divide 8 into 2548.  The quotient is 318 with a remainder of 4; indicate 
the 4 on the right. 
 

  
The answer, reading the remainders from top to bottom, is 4764, so 254810 = 47648. 
 
TRY THIS: Convert the following decimal numbers to their octal equivalents: 
 
(a) 300210       (b) 651210 
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Octal Addition

 
Octal addition is performed just like decimal addition, except that if a column of two addends produces a sum greater than 7, you must 
subtract 8 from the result, put down that result, and carry the 1.  Remember that there are no such digits as "8" and "9" in the octal 
system, and that  810 = 108 , 910 = 118, etc. 
 
 
Example 1: Add 5438 + 1218  (no carry required): 
                        
          5 4 3            
         + 1 2 1            
                        
          6 6 4            

 
Example 2: Add 76528 + 45748  (carries required): 

          1 1             
          7 6 5 2           
         + 4 5 7 4           
                        
          12 - 8 = 4 12 - 8 = 4 12 - 8 = 4            
         1 4 4 4 6           
 
 
TRY THIS:  Perform the following octal additions: 
 
               

 (a) 5 4 3 0   (b) 6 4 0 5   
 + 3 2 4 1   + 1 2 3 4   
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Octal Subtraction

 
We will use the complement method to perform octal subtraction.  The steps for subtracting two octal numbers are as follows: 
 
(1) Compute the seven's complement of the subtrahend by subtracting each digit of the subtrahend by 7.   
 
(2) Add 1 to the seven's complement of the subtrahend to get the eight's complement of the subtrahend. 
 
(3) Add the eight's complement of the subtrahend to the minuend and drop the high-order 1.  This is your difference. 
 
 
Example 1:  Compute 75268 - 31428
 
(1) Compute the seven's complement of 31428 by subtracting each digit from 7:  
                               
       7  7  7  7                  
      - 3 - 1 - 4 - 2                  
                               
       4  6  3  5                  
 
(2) Add 1 to the seven's complement of the subtrahend, giving the eight's complement of the subtrahend: 
                        
           4 6 3 5          
             + 1          
                        
           4 6 3 6          

 
(3) Add the eight's complement of the subtrahend to the minuend and drop the high-order 1, giving the difference: 

          1  1            
          7 5 2 6           
         + 4 6 3 6           
                        
          12 - 8 = 4 11 - 8 = 3  12 - 8 = 4           
         1 4 3 6 4           
 
So 75268 - 31428 = 43648
 
The answer can be checked by making sure that 31428 + 43648 = 75268 . 
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Example 2:  Compute 5458 - 148
 
(1) Compute the seven's complement of 148 (putting in a leading zero to make it a three-digit number) by subtracting each digit from 

7:  
                               
       7  7  7                    
      - 0 - 1 - 4                    
                               
       7  6  3                    
 
(2) Add 1 to the seven's complement of the subtrahend, giving the eight's complement of the subtrahend: 
                        
            7 6 3          
             + 1          
                        
            7 6 4          

 
(3) Add the eight's complement of the subtrahend to the minuend and drop the high-order 1, giving the difference: 

          1 1             
          5 4 5            
         + 7 6 4            
                        
          13 - 8 = 5 11 - 8 = 3 9 - 8 = 1            
         1 5 3 1            
 
So 5458 - 148 = 5318
 
The answer can be checked by making sure that 148 + 5318 = 5458 . 
 
TRY THIS: Solve the following octal subtraction problems using the complement method: 
 
(a) 67768 - 43378 =   (b) 54348 - 35568 = 
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The Hexadecimal Number System
 
The hexadecimal (base 16) number system is a positional number system as are the decimal number system and the binary number 
system.  Recall that in any positional number system, regardless of the base, the highest numerical symbol always has a value of one 
less than the base.  Furthermore, one and only one symbol must ever be used to represent a value in any position of the number. 
 
For number systems with a base of 10 or less, a combination of Arabic numerals can be used to represent any value in that number 
system.  The decimal number system uses the Arabic numerals 0 through 9; the binary number system uses the Arabic numerals 0 and 
1; the octal number system uses the Arabic numerals 0 through 7; and any other number system with a base less than 10 would use the 
Arabic numerals from 0 to one less than the base of that number system. 
 
However, if the base of the number system is greater than 10, more than 10 symbols are needed to represent all of the possible 
positional values in that number system.  The hexadecimal number system uses not only the Arabic numerals 0 through 9, but also uses 
the letters A, B, C, D, E, and F to represent the equivalent of 1010 through 1510, respectively. 
 
For reference, the following table shows the decimal numbers 0 through 31 with their hexadecimal equivalents: 

 
Decimal Hexadecimal Decimal Hexadecimal 

0 0 16 10 
1 1 17 11 
2 2 18 12 
3 3 19 13 
4 4 20 14 
5 5 21 15 
6 6 22 16 
7 7 23 17 
8 8 24 18 
9 9 25 19 
10 A 26 1A 
11 B 27 1B 
12 C 28 1C 
13 D 29 1D 
14 E 30 1E 
15 F 31 1F 

 
 
The same principles of positional number systems we applied to the decimal, binary, and octal number systems can be applied to the 
hexadecimal number system.  However, the base of the hexadecimal number system is 16,  so each position of the hexadecimal 
number represents a successive power of 16.  From right to left, the successive positions of the hexadecimal number are weighted 1, 
16, 256, 4096, 65536, etc.: 
 

160 = 1  161 = 16  162 = 256 163 = 4096 164 = 65536 
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Converting a Hexadecimal Number to a Decimal Number 
 

We can use the same method that we used to convert binary numbers and octal numbers to decimal numbers to convert a hexadecimal 
number to a decimal number, keeping in mind that we are now dealing with base 16.  From right to left, we multiply each digit of the 
hexadecimal number by the value of 16 raised to successive powers, starting with the zero power, then sum the results of the 
multiplications.  Remember that if one of the digits of the hexadecimal number happens to be a letter A through F, then the 
corresponding value of 10 through 15 must be used in the multiplication. 
 
Example 1:  Convert the hexadecimal number 20B316 to its decimal equivalent. 
 
    2 0 B 316 
 
         3 x 160 = 3 x 1 = 3 
         11 x 161 = 11 x 16 = 176 
         0 x 162 = 0 x 256 = 0 
         2 x 163 = 2 x 4096 = 8192 
                 ------  
                 8371 10
 
 
Example 2:  Convert the hexadecimal number 12AE516 to its decimal equivalent. 
 
   1 2 A E 516 
 
         5 x 160 = 5 x 1 = 5 
         14 x 161 = 14 x 16 = 224 
         10 x 162 = 10 x 256 = 2560 
         2 x 163 = 2 x 4096 = 8192 
         1 x 164 = 1 x 65536 = 65536 
                 -------- 
                 76517 10
 
 
TRY THIS. Convert the following hexadecimal numbers to their decimal equivalents: 
 
(a)  2 4 3 F16
 
 
 
 
 
 
 
 
(b)  B E E F16 
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Converting a Decimal Number to a Hexadecimal Number

 
To convert a decimal number to its hexadecimal equivalent, the remainder method (the same method used in converting a decimal 
number to  its binary equivalent) can be used.  To review, the remainder method involves the following four steps: 
 
(1) Divide the decimal number by the base (in the case of hexadecimal, divide by 16). 
(2) Indicate the remainder to the right.  If the remainder is between 10 and 15, indicate the corresponding hex digit A through F. 
(3) Continue dividing into each quotient (and indicating the remainder) until the divide operation produces a zero quotient. 
(4) The base 16 number is the numeric remainder reading from the last division to the first (if you start at the bottom, the answer 

will read from top to bottom). 
 
 
Example 1: Convert 926310 to its hexadecimal equivalent: 
 
  

 0 
  
16 2 
 

 
2 

 
(4) 

 
Divide 16 into 2.  The quotient is 0 with a remainder of 2, as indicated. 
Since the quotient is 0, stop here. 

  
   2  
  
16 36 
 

 
4 

 
(3) 

 
Divide 16 into 36.   The quotient is 2 with a remainder of 4, indicated on 
the right. 

  
   36  
  
16 578 
 

 
2 
 
 

 
(2) 

 
Divide 16 into 578 (the quotient from the previous division).  The 
quotient is 36 with a remainder of 2, indicated on the right. 

 
 
START 
HERE ⇒ 

 
    578 
  
16 9263 
 

 
F 
 
 

 
(1) 

 
Divide 16 into 9263.  The quotient is 578 with a remainder of 15; so 
indicate the hex equivalent, "F",  on the right. 
 

 
 
The answer, reading the remainders from top to bottom, is 242F, so 926310 = 242F16. 
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Example 2: Convert 425910 to its hexadecimal equivalent: 
 
  

 0 
  
16 1 
 

 
1 

 
(4) 

 
Divide 16 into 1.  The quotient is 0 with a remainder of 1, as indicated. 
Since the quotient is 0, stop here. 

  
   1  
  
16 16 
 

 
0 

 
(3) 

 
Divide 16 into 16.   The quotient is 1 with a remainder of 0, indicated on 
the right. 

  
   16  
  
16 266 
 

 
A 
 
 

 
(2) 

 
Divide 16 into 266 (the quotient from the previous division).  The 
quotient is 16 with a remainder of 10, so the hex equivalent "A" is 
indicated on the right. 

 
 
START 
HERE ⇒ 

 
    266 
  
16 4259 
 

 
3 
 
 

 
(1) 

 
Divide 16 into 4259.  The quotient is 266 with a remainder of 3; so 
indicate 3 on the right. 
 

  
The answer, reading the remainders from top to bottom, is 10A3, so 425910 = 10A316. 
 
TRY THIS: Convert the following decimal numbers to their hexadecimal equivalents: 
 
(a) 6949810      (b) 11426710
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Hexadecimal Addition

 
One consideration is that if the result of an addition is between 10 and 15, the corresponding letter A through F must be written in the 
result: 

      
  1 9 5  
 + 3 1 9  
      
  4 A E  
      
 
In the example above, 5 + 9 = 14, so an "E" was written in that position; 9 + 1 = 10, so an "A" was written in that position. 
 
A second consideration is that if either of the addends contains a letter A through F, convert the letter to its decimal equivalent (either 
by memory or  by writing it down) and then proceed with the addition: 

      
  3 A 2  
   10   
 + 4 1 C  
    12  
      
  7 B E  
      
 
 
A third consideration is that if the result of an addition is greater than 15, you must subtract 16 from the result of that addition, put 
down the difference of that subtraction for that position, and carry a 1 over to the next position, as shown below: 
 

   1   
  D E B  
  13 14 11  
 + 1 0 E  
    14  
      
    11 + 14 = 25  
    25 - 16 = 9  
  E F 9  
      
In the example above, when B16 (1110) was added to E16 (1410), the result was 2510.  Since 2510 is greater than 1510, we subtracted 1610 
from the 2510 to get 910.  We put the 9 down and carried the 1 over to the next position.   
 
Here is another example with carries: 
 

 1  1   
 8 F 9 7  
  15    

+ D 5 4 C  
 13   12  
      
 1 + 8+ 13 = 22 15 + 5 = 20  7 + 12 = 19  
 22- 16 = 6 20 - 16 = 4  19 - 16 = 3  

1 6 4 E 3  
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TRY THIS: Perform the following hexadecimal additions: 
 
 
(a)  B E D    (b)  D E A D  

 
+ 2 A 9     + B E E F 

 
 
 
 
 
 
 
 

Hexadecimal Subtraction
 
We will use the complement method to perform hexadecimal subtraction.  The steps for subtracting two hexadecimal numbers are as 
follows: 
 
(1) Compute the 15's complement of the subtrahend by subtracting each digit of the subtrahend by 15.   
 
(2) Add 1 to the 15's complement of the subtrahend to get the 16's complement of the subtrahend. 
 
(3) Add the 16's complement of the subtrahend to the minuend and drop the high-order 1.  This is your difference. 
 
 
Example 1:  Compute ABED16 - 1FAD16
 
(1) Compute the 15's complement of 1FAD16 by subtracting each digit from 15:  

                 
       15  15  15  15    
      - 1 - F - A - D    
                 
       E  0  5  2    

 
(2) Add 1 to the 15's complement of the subtrahend, giving the 16's complement of the subtrahend: 
                        
           E 0 5 2          
             + 1          
                        
           E 0 5 3          

 
(3) Add the 16's complement of the subtrahend to the minuend and drop the high-order 1, giving the difference: 

      1  1 1            
       A B E D           
      + E 0 5 3           
                     
       24 - 16 = 8  20 - 16 = 4 16 - 16 = 0           
      1 8 C 4 0           
 
So ABED16 - 1FAD16 = 8C4016
 
The answer can be checked by making sure that 1FAD16 + 8C4016 = ABED16.
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Example 2:  Compute FEED16 - DAF316
 
(1) Compute the 15's complement of DAF316 by subtracting each digit from 15:  

                 
       15  15  15  15    
      - D - A - F - 3    
                 
       2  5  0  C    

 
(2) Add 1 to the 15's complement of the subtrahend, giving the 16's complement of the subtrahend: 
                        
           2 5 0 C          
             + 1          
                        
           2 5 0 D          

 
(3) Add the 16's complement of the subtrahend to the minuend and drop the high-order 1, giving the difference: 

      1 1  1            
       F E E D           
      + 2 5 0 D           
                     
       18 - 16 = 2 19 - 16 = 3  26 - 16 = 10           
      1 2 3 F A           
 
So FEED16 - DAF316 = 23FA16
 
The answer can be checked by making sure that DAF316 + 23FA16 = FEED16.
 
TRY THIS: Solve the following hexadecimal subtraction problems using the complement method: 
 
(a) 98AE16 - 1FEE16 =   (b) B6A116 - 8B1216 = 
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Converting Binary-to-Hexadecimal or Hexadecimal-to-Binary
 
Converting a binary number to its hexadecimal equivalent or vice-versa is a simple matter.  Four binary digits are equivalent to one 
hexadecimal digit, as shown in the table below: 
 

Binary Hexadecimal 
0000 0 
0001 1 
0010 2 
0011 3 
0100 4 
0101 5 
0110 6 
0111 7 
1000 8 
1001 9 
1010 A 
1011 B 
1100 C 
1101 D 
1110 E 
1111 F 

 
To convert from binary to hexadecimal, divide the binary number into groups of 4 digits starting on the right of the binary number. 
If the leftmost group has less than 4 bits, put in the necessary number of leading zeroes on the left.  For each group of four bits, write 
the corresponding single hex digit. 
 
Example 1:  11010011011101112 = ?16    Example 2:  1011011112 = ?16
 
Answer: Bin: 1101 0011 0111 0111  Answer: Bin: 0001 0110 1111 
  Hex: D 3 7 7    Hex: 1 6 F 
 
 
To convert from hexadecimal to binary, write the corresponding group of four binary digits for each hex digit. 
 
Example 1: 1BE916 = ?2      Example 2: B0A16 = ?2
 
Answer: Hex: 1 B E 9   Answer: Hex: B 0 A 
  Bin: 0001  1011 1110 1001    Bin: 1011 0000 1010 
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Converting Binary-to-Octal or Octal-to-Binary
 
Converting a binary number to its octal equivalent or vice-versa is a simple matter.  Three binary digits are equivalent to one octal 
digit, as shown in the table below: 
 

Binary Octal 
000 0 
001 1 
010 2 
011 3 
100 4 
101 5 
110 6 
111 7 

 
To convert from binary to octal, divide the binary number into groups of 3 digits starting on the right of the binary number. If the 
leftmost group has less than 3 bits, put in the necessary number of leading zeroes on the left.  For each group of three bits, write the 
corresponding single octal digit. 
 
Example 1:  1101 0011011101112 = ?8
Answer: Bin: 001 101 001 101 110 111   
  Oct: 1 5 1 5 6 7 
 
Example 2:  1011011112 = ?8 
Answer: Bin: 101 101 111 

Oct: 5 5 7 
 
 
To convert from octal to binary, write the corresponding group of three binary digits for each octal digit. 
 
Example 1: 17648 = ?2
Answer:  Oct: 1 7 6 4    
            Bin: 001  111 110 100                         
 
Example 2: 7318 = ?2 
Answer:     Oct: 7 3 1 

Bin: 111  011 001 
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Computer Character Sets and Data Representation
 
Each character is stored in the computer as a byte.  Since a byte consists of eight bits, there are 28, or 256 possible combinations of bits 
within a byte, numbered from 0 to 255.  There are two commonly used character sets that determine which particular pattern of bits 
will represent which character: ASCII (pronounced "as-key", stands for American Standard Code for Information Interchange) is 
used on most minicomputers and PCs, and EBCDIC (pronounced "eb-suh-dick", stands for Extended Binary Coded Decimal 
Interchange Code) is used on IBM mainframes. 

 
The ASCII Character Set 

(Characters 32 through 127) 
 
Shown below are characters 32 through 127 of the ASCII character set, which encompass the most commonly displayed characters 
(letters, numbers, and special characters).  Characters 0 through 31 are used primarily as "control characters" (characters that control 
the way hardware devices, such as modems, printers, and keyboards work) - for example, character number 12 is the "form feed" 
character, which when sent to a printer, causes the printer to start a new page.  Characters 128 through 255 are other special characters, 
such as symbols for foreign currency, Greek letters, and "box-drawing" characters that, for example, are used to make dialog boxes in 
DOS-text based (non-GUI) applications such as MS-DOS EDIT and QBASIC.  
 
 
Decimal Hex Char  Decimal Hex Char  Decimal Hex Char 

32 20 space  64 40 @  96 60 ` 
33 21 !  65 41 A  97 61 a 
34 22 "  66 42 B  98 62 b 
35 23 #  67 43 C  99 63 c 
36 24 $  68 44 D  100 64 d 
37 25 %  69 45 E  101 65 e 
38 26 &  70 46 F  102 66 f 
39 27 '  71 47 G  103 67 g 
40 28 (  72 48 H  104 68 h 
41 29 )  73 49 I  105 69 i 
42 2A *  74 4A J  106 6A j 
43 2B +  75 4B K  107 6B k 
44 2C ,  76 4C L  108 6C l 
45 2D -  77 4D M  109 6D m 
46 2E .  78 4E N  110 6E n 
47 2F /  79 4F O  111 6F o 
48 30 0  80 50 P  112 70 p 
49 31 1  81 51 Q  113 71 q 
50 32 2  82 52 R  114 72 r 
51 33 3  83 53 S  115 73 s 
52 34 4  84 54 T  116 74 t 
53 35 5  85 55 U  117 75 u 
54 36 6  86 56 V  118 76 v 
55 37 7  87 57 W  119 77 w 
56 38 8  88 58 X  120 78 x 
57 39 9  89 59 Y  121 79 y 
58 3A :  90 5A Z  122 7A z 
59 3B ;  91 5B [  123 7B { 
60 3C <  92 5C \  124 7C | 
61 3D =  93 5D ]  125 7D } 
62 3E >  94 5E ^  126 7E ~ 
63 3F ?  95 5F _  127 7F  
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Data and instructions both "look" the same to the computer - they are both represented as strings of bits.  The way a particular pattern 
of bits is treated by the computer depends on the context in which the string of bits is being used.  For example, the bit pattern 
000000001 (hex 01)  can be interpreted by the computer in any of three ways: when it is interpreted as a machine language instruction, 
it causes the contents of two registers to be added together; when it is interpreted as a control code, it signifies a "start of heading" 
which precedes text in a data transmission; and when it is interpreted as a character (on IBM PCs), it shows up as a "happy face". 
 
And in addition to differentiating between instructions and data, there are different data types, or formats, which the computer treats in 
specific ways.  In the ASCII character chart on the previous page, when the computer is using the bit patterns in a data "character" 
context, character 65 (hex 41 or binary 01000001) is treated as a capital "A".  Likewise, when a data item such a zip code or phone 
number is stored, although it consists only of numeric digits, no arithmetic will be performed with that data item, so it is also suitable 
for being stored in "character" format.  So a data item containing the zip code "90210" would be stored as (in hex) 3930323130. 
 
The computer cannot perform arithmetic on numeric quantities that are stored in character format.  For example, if you wanted to add 
the number 125, the computer could not add it if it was stored as (hex) 313235.  It would have to be stored as (or converted to) a 
numeric format that the computer can work with - either "integer" format or "floating point" format. 
 
In the pages that follow, we will look at how the computer stores various data items and how we can look at that internal 
representation via a memory "dump". 
 
The first order of business is to create some sample data.  The following QBASIC program causes a file consisting of one record 
(consisting of fields of different data types) to be written to a file called "TESTFILE.DAT" and stored on disk: 
 
TYPE MyRecord 
    MyName   AS STRING * 16 
    PosInt   AS INTEGER 
    NegInt   AS INTEGER 
    PosSing  AS SINGLE 
    NegSing  AS SINGLE 
END TYPE 
 
DIM TestRecord AS MyRecord 
 
OPEN "TESTFILE.DAT" FOR RANDOM AS #1 LEN = 28 
TestRecord.MyName = "HARRY P. DODSON" 
TestRecord.PosInt = 25 
TestRecord.NegInt = -2 
TestRecord.PosSing = 6.75 
TestRecord.NegSing = -4.5 
PUT #1, , TestRecord 
CLOSE #1 
END 
 

Writes a record to the file, closes the file, and ends 
the program. 

This code here sets up a record structure with 
fields defined in various formats. 

Opens the DOS file into which the record data 
will be stored. 

Fills the fields of the record with test data. 

The QBASIC program listed above defines a record 28 bytes long, with the fields mapped out as follows: 
 
A field called MyName, defined as STRING * 16.  A STRING data type stores data in "character" format, using the ASCII characters 
as shown on the chart a couple of pages back.  A field defined as STRING * n defines a character field n bytes long (16 bytes in this 
case).  This then defines the first 16 bytes of the 28 byte record. 
 
The next two fields are INTEGER fields, called PosInt and NegInt.  A QBASIC INTEGER field takes up two bytes of storage, so 
these two fields define the next 4 bytes of the record.  Only integers, or whole numbers, can be stored in INTEGER type fields.  
INTEGER fields store values in "signed binary" format, where the high-order (leftmost) bit designates the sign of the number: a "zero" 
high-order bit signifies a positive number, a "one" high-order bit signifies a negative number. 
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The bits of a positive integer field are arranged as you might expect: the value 5 would be stored as 00000000 00000101 (or 00 05 in 
hex).  But a negative value is stored in two's complement notation - so the value -5 would be stored as 11111111 11111011 (or FF FB 
in hex).  One more twist: the PC stores integer fields with the bytes arranged from right to left - NOT left to right as you might expect - 
so the 5 in the example above would actually show up on a dump as 05 00 in hex, and the -5 would show up as FB FF in hex. 
 
The last two fields are defined as SINGLE fields, called PosSing and NegSing.  A QBASIC SINGLE field takes up four bytes of 
storage, so these last two fields occupy the last eight bytes of the 28 byte record.  SINGLE fields store numeric data in "floating point" 
format, which permits "real" numbers (numbers that can have digits after the decimal point) to be stored.  Floating point format is the 
most complex data type to understand; it will be explained in the context of the data dump shown in the next section.  Floating point 
fields are also stored with its bytes arranged from right to left. 
 
QBASIC has two other data types not used in this example.  They are LONG and DOUBLE.  LONG is a four-byte integer 
counterpart to the two-byte INTEGER data type, and DOUBLE is an eight-byte floating point counterpart to the four-byte SINGLE 
data type.  
 
After the sample QBASIC program was executed, a file called TESTFILE.DAT was created and placed in the default DOS directory.  
The file contained 28 bytes, for the storage of one record written out by the program.  The contents of this file (or any file) can be 
"dumped" by the DOS DEBUG program.  Below is a screen shot of that DOS session (the characters in bold represent the internal 
binary representation of the 28 bytes of the file, in hex): 
 
F:\CLC\CP110>debug testfile.dat                                                  
-d                                                                               
2F24:0100  48 41 52 52 59 20 50 2E-20 44 4F 44 53 4F 4E 20   HARRY P. DODSON     
2F24:0110  19 00 FE FF 00 00 D8 40-00 00 90 C0 34 00 13 2F   .......@....4../    
2F24:0120  00 DB D2 D3 E0 03 F0 8E-DA 8B C7 16 C2 B6 01 16   ................    
2F24:0130  C0 16 F8 8E C2 AC 8A D0-00 00 4E AD 8B C8 46 8A   ..........N...F.    
2F24:0140  C2 24 FE 3C B0 75 05 AC-F3 AA A0 0A EB 06 3C B2   .$.<.u........<.    
2F24:0150  75 6D 6D 13 A8 01 50 14-74 B1 BE 32 01 8D 8B 1E   umm...P.t..2....    
2F24:0160  8E FC 12 A8 33 D2 29 E3-13 8B C2 03 C3 69 02 00   ....3.)......i..    
2F24:0170  0B F8 83 FF FF 74 11 26-01 1D E2 F3 81 00 94 FA   .....t.&........    
-q                                                                               
                                                                                 
F:\CLC\CP110>                                                                    
                                                                                 
The first line of the screen shot shows that the DEBUG program was initiated from the DOS prompt (the filename TESTFILE.DAT 
was supplied to the DEBUG command).  When DEBUG runs, all you see is a "hyphen" prompt.  At the hyphen, any one of a number 
of one-character commands can be given.  On the second line of the screen shot, you see that the command "d" (for "dump") was 
given.  This caused a section of memory to be dumped (as shown on the next several lines of the screen shot).  The dump command 
caused the 28-byte file to be loaded into memory.  The data from that file, along with whatever other "junk" was occupying the 
subsequent bytes of memory was displayed.  After the section of memory was dumped, the hyphen prompt returned, where the "q" (for 
"quit") command was given.  This caused the DEBUG program to end, causing the DOS prompt to return. 
 
The format of the DEBUG dump display is as follows: on the left of each line, the memory address (in hex) of the displayed data is 
given (in the screen shot above, the addresses are 2F24:0100, 2F24:0110, etc.).  The main part of the line is the data being dumped, in 
hex format (16 bytes per line).  The rightmost portion of each line is the ASCII character representation of the data being dumped; 
non-printable characters show up as dots (periods). 
 
The entire first line of the dumped data shows the hex representation of the content of the 16-byte field MyName (into which the 
QBASIC program had placed "HARRY P. DODSON").  You should see that the hex 48 corresponds to the letter "H", 41 corresponds 
to "A", 52 corresponds to "R, and so on. 
 
On the second line of the dumped data, the first two hex bytes are 19 00.  This represents the value 25 that the QBASIC program 
placed in the INTEGER field PosInt.  Recall that integer fields are stored with their bytes arranged from right to left, so we should 
read these two bytes as 00 19 - and you know that 1916 = 2510. 
 
The next two hex bytes on the second line of dumped data are FE FF.  This represents the value -2 that the QBASIC program placed 
in the INTEGER field NegInt.  Read as FF FE, you can see that this represents the two's complement of 2 (recall that negative 



Number Systems 
 

 

 
Page 30 

integers are stored in two's complement notation). 
  
The next four bytes on the second line of dumped data are  00 00 D8 40.  This represents the value 6.75 that the QBASIC program 
placed in the SINGLE floating-point field PosSing.  Recall that floating point fields, like integer fields, store their bytes from right to 
left, so we should read this as 40 D8 00 00.  As mentioned earlier, floating point is the most complex of the data types, so it requires a 
bit of a learning curve to understand.  The following is a partial definition of the format from a computer manual: 

 
Floating-point numbers use the IEEE (Institute of Electrical and Electronic 
Engineers, Inc.) format.  Values with a float type have 4 bytes, consisting of a 
sign bit, an 8-bit excess-127 binary exponent, and a 23-bit mantissa.  The 
mantissa represents a number between 1.0 and 2.0.  Since the high-order bit of 
the mantissa is always 1, it is not stored in the number. 

 
In order to analyze what we see in the dump (i.e., "How do you get 6.75 from the hex bytes 40 D8 00 00?"), we must understand and 
apply the information above.  Before we do that, we must understand the concept of fractional binary numbers, or binary numbers that 
have a binary point.   
 
In the earlier parts of this document, we examined only "whole" binary numbers.  We learned that each digit of the binary number 
represents a specific power of base 2 (from right to left, 20, 21, 22, etc.)  When you have a binary number with a binary point (same 
principle as a decimal point in a base 10 number), such as 100.101, the digits to the right of the point are weighted as follows (from left 
to right): 2-1 = 1/2 = .5, 2-2 = 1/4 = .25, 2-3 = 1/8 = .125, etc. So 100.1012 = 4 + 0 + 0 + .5 + 0 + .125 = 4.62510. 
 
Getting back to our number in the dump (40 D8 00 00), it will be necessary to expand this hex notation to binary to see how this 
represents the value 6.75. 
 
 4 0 D 8 0 0 0 0 
 0100 0000 1101 1000 0000 0000 0000 0000 
 
The leftmost bit of this number is the sign bit - it is zero, so this means it is a positive number. 
 
The next 8 bits, as stated in the IEEE definition of this format, is an "8-bit excess-127 binary exponent".  These are the eight bits 
shown shaded in the figure above.  "Excess-127" means that the value 127 must be subtracted from the value of these eight bits (the 
127 is sometimes called a "bias quantity").  If you take the value of 100000012, you get the value 12910 .  Subtract 127 from 129 and 
you get 2.  We'll see what to do with the 2 shortly. 
 
Following the 8-bit exponent, as stated in the IEEE definition, we have a "23-bit mantissa".  This is shown shaded below: 
 
 4 0 D 8 0 0 0 0 
 0100 0000 1101 1000 0000 0000 0000 0000 
 
The mantissa represents the magnitude of the number being worked with.  There is always an implied binary point in front of the 
stored mantissa,  so the shaded portion above represents .101100000000000000000002.  Just as in a decimal number, we can drop 
insignificant trailing zeroes on the right of the point, so we get .10112.  The IEEE definition states "since the high-order bit of the 
mantissa is always 1, it is not stored in the number."  This means we must tack on a leading one in front of this binary number, giving 
1.10112. 
 
The "2" we got from the previous step (when we were working with the exponent portion) tells us where to move the binary point: two 
places to the right.  This gives us a final binary value of 110.112.  Converting this number to decimal by applying the binary weights, 
we get 4 + 2 + 0 + .5 + .25 = 6.75. 
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The next four bytes on the second line of dumped data (the last four bytes of the 28-byte record) are 00 00 90 C0, which we should 
read as C0 90 00 00.  This represents the value -4.5 that the QBASIC program placed in the SINGLE floating-point field NegSing.  
The hex code is analyzed in the following steps: 
 
(1) Convert the hex code to binary: 
 
 C 0 9 0 0 0 0 0 
 1100 0000 1001 0000 0000 0000 0000 0000 
 

The leftmost bit is 1, so we know that this is a negative number. 
 
 
(2) Isolate the exponent portion (the next eight bits): 
 
 C 0 9 0 0 0 0 0 
 1100 0000 1001 0000 0000 0000 0000 0000 
 

The decimal equivalent of these eight bits is 129.  Subtract 127 from that to get 2. 
 
(3) Isolate the mantissa: 
 
 C 0 9 0 0 0 0 0 
 1100 0000 1001 0000 0000 0000 0000 0000 
 
 Place 1. in front of the mantissa and drop the trailing zeroes to get 1.001. 
 
(4) Move the binary point the number of places dictated by the result from step 2, which was 2.  This gives us 100.1. 
 
(5) Convert the result from 4 to its decimal equivalent: 100.12  = 4 + 0 + 0 + .5 = 4.510. 
 



Number Systems 
 

 

 
Page 32 

The EBCDIC Character Set 
(Selected Characters) 

 
Shown below is a table of selected characters from the 255 character EBCDIC character set, used on IBM mainframes.  The letter and 
number characters are found in the upper half of the range (128 through 255): 
 

Decimal Hex Characters 
64 40 blank space 

129 thru 137 81 thru 89 lowercase "a" thru "i" 
145 thru 153 91 thru 99 lowercase "j" thru "r" 
162 thru 169 A2 thru A9 lowercase "s" thru "z" 
193 thru 201 C1 thru C9 uppercase "A" thru "I" 
209 thru 217 D1 thru D9 uppercase "J" thru "R" 
226 thru 233 E2 thru E9 uppercase "S" thru "Z" 
240 thru 249 F0 thru F9 digits 0 thru 9 

 
A test to look at how the computer stores various data items and how we can look at that internal representation via a memory "dump" 
was performed on an IBM mainframe. 
 
To create the sample data,  the following COBOL program was compiled and executed, causing a file consisting of one record 
(consisting of fields of different data types) to be written to disk: 
 
       IDENTIFICATION DIVISION. 
       PROGRAM-ID. DUMPDATA. 
 
       ENVIRONMENT DIVISION. 
       INPUT-OUTPUT SECTION. 
       FILE-CONTROL. 
           SELECT OUTPUT-FILE 
             ASSIGN TO UT-S-OUTPUT. 
 
       DATA DIVISION. 
       FILE SECTION. 
       FD  OUTPUT-FILE 
           BLOCK CONTAINS 0 RECORDS 
           LABEL RECORDS ARE STANDARD 
           DATA RECORD IS OUTPUT-RECORD. 
       01  OUTPUT-RECORD     PIC X(80). 
 
       WORKING-STORAGE SECTION. 
       01  WS-OUTPUT-RECORD. 
           05  O-NAME            PIC X(05)           VALUE 'HARRY'. 
           05  FILLER            PIC X(03)           VALUE SPACES. 
           05  O-POS-BINARY      PIC S9(4)    COMP   VALUE +25. 
           05  FILLER            PIC X(02)           VALUE SPACES. 
           05  O-NEG-BINARY      PIC S9(4)    COMP   VALUE -5. 
           05  FILLER            PIC X(02)           VALUE SPACES. 
           05  O-POS-PACKED      PIC S9(5)V99 COMP-3 VALUE +12345.67. 
           05  O-NEG-PACKED      PIC S9(5)V99 COMP-3 VALUE -76543.21. 
 
       PROCEDURE DIVISION. 
           OPEN OUTPUT OUTPUT-FILE. 
           WRITE OUTPUT-RECORD FROM WS-OUTPUT-RECORD. 
           CLOSE OUTPUT-FILE. 
           STOP RUN. 
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The IBM mainframe supports the following data formats: 
 
 Character Stores data in "character" format, using the EBCDIC characters as shown on the chart on the previous page. 

 In COBOL, a field defined as PIC X(n) defines a character field n bytes long. 
 
 Binary  Similar to "integer" format on the PC, this data type stores signed numbers in binary format, with negative 

numbers represented in two's complement notation.  A binary field can be either 2, 4, or 8 bytes long.  
Unlike the PC, fields of this type are not restricted to integer values, although that is what they are 
commonly used for.  In COBOL, the word COMP in a data definition signifies a binary field, and PIC 
S9(n) determines its size.  If n is 1 through 4, a 2-byte binary field is defined; if n is 5 through 9, a 4-byte 
binary field is defined; and if n is 10 through 18, an 8-byte binary field is defined. 

 
 Packed Decimal This format is native to IBM mainframes, NOT PCs.  It stores numeric data as two decimal (hex) digits per 

byte, with the sign indicated as the rightmost hex digit of the rightmost byte.  A positive value has a hex 
value of  C (binary 1100); a negative value has a hex value of D (binary 1101).  For example, a positive 
123.45 would be stored as (in hex) 12 34 5C; a negative 123.45 would be stored as (in hex) 12 34 5D.  
There is no internal representation of the decimal point, this must be defined by the program that is 
processing that data.  The length of a packed decimal field can vary from 1 to 8 bytes (allowing up to 15 
total digits).  In COBOL, the word COMP-3 in a data definition signifies a packed-decimal field, and its 
PIC clause determines its size. 

  
 Floating Point Stores data in floating point format similar to the PC, but does not follow the IEEE format.  Not used in this 

example. 
 
Note: All formats store their bytes left to right (numeric formats are not stored right to left like they are on the PC). 
 
Without delving further into COBOL syntax, trust that the following data definitions in the sample COBOL program cause the 
indicated data items to be stored in the test record: 
 
This data definition Stores
O-NAME        PIC X(05)           VALUE 'HARRY'. The characters "HARRY"  in a 5-byte character field. 
FILLER        PIC X(03)           VALUE SPACES.  Blank spaces in a 3-byte character field. 
O-POS-BINARY  PIC S9(4)    COMP   VALUE +25. The value 25 in a 2-byte binary field. 
FILLER        PIC X(02)           VALUE SPACES. Blank spaces in a 2-byte character field. 
O-NEG-BINARY  PIC S9(4)    COMP   VALUE -5. The value -5 in a 2-byte binary field. 
FILLER        PIC X(02)           VALUE SPACES. Blank spaces in a 2-byte character field. 
O-POS-PACKED  PIC S9(5)V99 COMP-3 VALUE +12345.67. The value 12345.67 in a 4-byte packed decimal field. 
O-NEG-PACKED  PIC S9(5)V99 COMP-3 VALUE -76543.21. The value -76543.21 in a 4-byte packed-decimal field. 
 
This data defines a total of 24 bytes, but was actually written to an 80-byte record, causing 56 trailing blank spaces to be written at the 
end of the record. 
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The IBM mainframe utility program IDCAMS was used to produce a dump of this file.  The output is shown below: 
 
 
IDCAMS  SYSTEM SERVICES                                           TIME: 16:22:43        12/09/97     PAGE   2 
LISTING OF DATA SET -SYS97343.T162200.RF103.BDG0AMS.TEMP 
RECORD SEQUENCE NUMBER - 1 
000000 C8C1D9D9 E8404040 00194040 FFFB4040 1234567C 7654321D 40404040 40404040 *HARRY   ..  ..  ...@....    * 
000020 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 *                            * 
000040 40404040 40404040 40404040 40404040                                     *                            * 
 
IDC0005I NUMBER OF RECORDS PROCESSED WAS 1 
IDC0001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0 
 
 
The format of the IDCAMS output is similar to that of the DOS DEBUG command, although you get 32 bytes worth of dumped data 
per line (instead of DEBUG's 16 bytes).  The actual dumped data from the 80-byte file is highlighted in bold above.  All the items of 
interest appear in the first line of the dumped data, reproduced below:  
 
C8C1D9D9 E8404040 00194040 FFFB4040 1234567C 7654321D 40404040 40404040 
 
The first eight bytes (shown shaded below) is the EBCDIC character representation of the word "HARRY" followed by three blank 
spaces: 
C8C1D9D9 E8404040 00194040 FFFB4040 1234567C 7654321D 40404040 40404040 
 
The next two bytes shows the binary field into which the value 25 was stored: 
C8C1D9D9 E8404040 00194040 FFFB4040 1234567C 7654321D 40404040 40404040 
 
Two bytes of blanks: 
C8C1D9D9 E8404040 00194040 FFFB4040 1234567C 7654321D 40404040 40404040 
 
The 2-byte binary field where -5 is stored in two's complement format: 
C8C1D9D9 E8404040 00194040 FFFB4040 1234567C 7654321D 40404040 40404040 
 
Two more bytes of blanks: 
C8C1D9D9 E8404040 00194040 FFFB4040 1234567C 7654321D 40404040 40404040 
 
The 4-byte packed-decimal field where 12345.67 is stored: 
C8C1D9D9 E8404040 00194040 FFFB4040 1234567C 7654321D 40404040 40404040 
 
The 4-byte packed-decimal field where -76543.21 is stored: 
C8C1D9D9 E8404040 00194040 FFFB4040 1234567C 7654321D 40404040 40404040 
 
The rest of the record is all blank spaces. 
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TRY THIS: Expand the following decimal number: 
 

5 1 3 010
 

Answer: (Expand as on previous page) 
 
 
TRY THIS: Convert the following binary numbers to their decimal equivalents: 
 
(a) 1 1 0 0 1 1 02
 

Answer: 10210
 
 (b) 1 1 1 1 1 0 0 12 
 

Answer: 24910
 
 
 
TRY THIS: Convert the following decimal numbers to their binary equivalents: 
 
 

(a) 4910      (b) 2110
 
Answers:  (a) 110012    (b) 101012

 
 
TRY THIS:  Perform the following binary additions: 
 
                            

(a) 1 0 0 1  (b) 1 1 1 0  (c) 1 0 1 0 1  (d) 1 1 0 1 1 0   
+ 1 1 0 0  + 1 1 0 1  + 0 0 1 1 1  + 1 1 1 0 1 1   

                            
                            
Answers: 
(a) 10101  (b) 11011   (c) 11100   (d) 1110001 
 

 
TRY THIS: Solve the following subtraction problems using the complement method: 
 
(a) 5086 - 2993 =  

 
Answer: 209310

 
(b) 8391 - 255 = 
 

Answer: 813610
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TRY THIS: Solve the following binary subtraction problems using the complement method: 
 
(a) 110011012 - 101010102 =   (b) 1001002 - 111012 = 
 

Answers: (a) 1000112  
(b) 1112

 
 TRY THIS: Convert the following octal numbers to their decimal equivalents: 
 
(a) 5 3 68
 

Answer: 35010
 
 
(b) 1 1 6 38 
 

Answer: 62710
 
 
TRY THIS: Convert the following decimal numbers to their octal equivalents: 
 
(a) 300210       (b) 651210 

 

Answer: 57628      Answer: 145608
 
 
TRY THIS:  Perform the following octal additions: 
 
               

 (a) 5 4 3 0   (b) 6 4 0 5   
 + 3 2 4 1   + 1 2 3 4   
               
               

Answer: 106718      Answer: 76418
 
 
TRY THIS: Solve the following octal subtraction problems using the complement method: 
 
(a) 67768 - 43378 =   (b) 54348 - 35568 = 

Answer: 24378      Answer: 16568
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TRY THIS. Convert the following hexadecimal numbers to their decimal equivalents: 
 
(a)  2 4 3 F16
 

Answer: 927910
 
 
(b)  B E E F16 

 

Answer: 4887910 
 

 
TRY THIS: Convert the following decimal numbers to their hexadecimal equivalents: 
 
(a) 6949810      (b) 11426710
 

Answer: 10F7A16     Answer: 1BE5B16
 
 
TRY THIS: Perform the following hexadecimal additions: 
 
 
(a)  B E D    (b)  D E A D  

 
+ 2 A 9     + B E E F 

 
 
 

 
 
TRY THIS:

Answer: E9616     Answer: 19D9C16
 

 Solve the following hexadecimal subtraction problems using the complement method: 
 
(a) 98AE16 - 1FEE16 =   (b) B6A116 - 8B1216 = 

 
Answer: 78C016      Answer: 2B8F16



Number Systems 
 

 

 
Page 39 

 
 
 
 
 
 

 

 

 

 

 

 

QUIZ 

 

 

 

 

 

 
 
 
 
 

TAKE-HOME 



Number Systems 
 

 

 
Page 40 

 
Name: _________________ Date: _________________ 
 
 
DIRECTIONS:  Perform the operations indicated below.  Show all work neatly on separate sheet(s) of paper.  Write the final 

answers in the spaces provided. 

                

(6) 10102 - 1112 = ____________2 

                   

(10) 16610 = __________________2

 

 

                                       
Questions 1-30 are worth 3 points each. 

      
Convert the following binary numbers to their decimal equivalents:     

(1) 100101102 =  _________10 

 
(2) 10011112  =  _________10

                      
(3) 100000012  =  _________10

 
Find the following binary sums: 

     
(4) 10102 + 1012  =  ____________2 

 
(5) 11112 + 12  =  ____________2

 
Find the following binary differences: 

     

 
(7) 110112 - 11102 = ____________2

 
Convert the following decimal numbers to their binary equivalents: 

(8) 25510 = __________________2 

 
(9) 8910 = __________________2

                   

 
 
Convert the following hex numbers to their decimal equivalents: 
                     

(11) C0A816 = _______________10 

(12) FACE16 = _______________10
               
(13) 64F016 = _______________10

 
Find the following hexadecimal sums: 

    
(14) CAB16 + BED16 = __________16 

 
(15) 3FF16 + 116  =  __________16
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Find the following hexadecimal differences: 

    
(16) FADE16 - BAD16   =  __________16 

 

                     

 

 
(20) 3276810  = ___________16

 

Find the following octal sums: 

 

 

 
(27) 7508 – 2708  = __________8

 
Convert the following decimal numbers to their octal equivalents: 

(28) 670010  = ___________8 

 

 

 

Questions 31-40 are worth 1 point each. 

 

(17) ACE916 - 9ACE16  =  _________16
 
Convert the following decimal numbers to their hex equivalents: 

(18) 6900010  = ___________16  

(19) 199810  =  ___________16

 
Convert the following octal numbers to their decimal equivalents: 
                     

(21) 3328  = ______________10

(22) 62408  = ______________10
               
(23) 55668  = ______________10

 

    
(24) 7658+ 1238  = __________8 

(25) 6318 + 2678  = __________8

Find the following octal differences: 
    

(26) 7008 - 168  =  __________8 

                     

(29) 100110  = ___________8

(30) 25410  = ___________8

 

 
Convert the following hex numbers to their binary equivalents: 

(31) 1FB16  =  ___________________2 
             
(32) ABC16  =  ___________________2 

 
(33) 101F16  =  ___________________2
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Convert the following binary numbers to their hex equivalents: 
 

(34) 1101100102   = _________16 

 

 
(38) 110000101111002  = _________8             

 

      

 
(40) 6138  = _________________________2             

 

 

      
(35) 11010110011102   = _________16 

(36) 110000101111002  = ________16             
 
Convert the following binary numbers to their octal equivalents: 

      
(37) 11010110011102   = _________8

Convert the following octal numbers to their binary equivalents: 

(39) 4728   = _________________________2

 
Extra Credit: 
Let’s say you wrote a QBASIC program that stored the following values in the indicated field types.  Write the sequence of bytes that 
would show up for each field in a DEBUG dump: 

Field type  Value   Hex bytes 
 
STRING * 5  “HELLO”  _________________________________________ 
 
INTEGER  45   _________________________________________ 
 
INTEGER  -18   __________________________________________ 
 
SINGLE   9.25   __________________________________________ 
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Number Systems Take-Home Quiz Answer Key 
 
1. 150 
2. 79 
3. 129 

5. 10000 

7. 1101 

9. 101 1001 

11. 49320 

15. 400 
16. EF31 

18. 10D88 

20. 8000 

22. 3232 

24. 1110 

28. 15054 
29. 1751 

31. 0001 1111 1011 
32. 1010 1011 1100 
33. 0001 0000 0001 1111 

35. 1ACE 

37. 15316 
38. 30274 
39. 100 111 010 

EXTRA CREDIT 

4. 1111 

6. 11 

8. 1111 1111 

10. 1010 0110 

12. 64206 
13. 25840 
14. 1898 

17. 121B 

19. 7CE 

21. 218 

23. 2934 

25. 1120 
26. 662 
27. 460 

30. 376 

34. 1B2 

36. 30BC 

40. 110 001 011 
 

1. 48 45 4C 4C 4F 
2. 2D 00 
3. EE FF 
4. 00 00 14 41 


